资源类型

期刊论文 1373

会议视频 79

会议信息 4

会议专题 1

年份

2024 1

2023 133

2022 165

2021 145

2020 117

2019 90

2018 96

2017 64

2016 52

2015 74

2014 49

2013 49

2012 47

2011 62

2010 64

2009 53

2008 36

2007 27

2006 14

2005 14

展开 ︾

关键词

能源 53

可持续发展 13

核能 11

可再生能源 10

节能 10

碳中和 8

普光气田 7

能源安全 6

2035 4

关键技术 4

新能源 4

智能电网 4

氢能 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

展开 ︾

检索范围:

排序: 展示方式:

Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0744-9

摘要: Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials, such as poor machinability, low cutting efficiency, and high energy consumption. High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids. However, the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials. The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing, making it a focus of academic and industrial research. In this review, the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials, including titanium alloys, nickel-based alloys, and high-strength steel, are systematically explored. The laser energy field, ultrasonic energy field, and cryogenic minimum quantity lubrication energy fields are introduced. By analyzing the effects of changing the energy field and cutting parameters on tool wear, chip morphology, cutting force, temperature, and surface quality of the workpiece during milling, the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated. Finally, the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail, providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future.

关键词: difficult-to-machine metal material     green machining     high-speed dry milling     laser energy field-assisted milling     ultrasonic energy field-assisted milling     cryogenic minimum quantity lubrication energy field-assisted milling    

Development of lunar regolith composite and structure via laser-assisted sintering

《机械工程前沿(英文)》 doi: 10.1007/s11465-021-0662-2

摘要: Aiming at the exploration and resource utilization activities on the Moon, in situ resource utilization and in situ manufacturing are proposed to minimize the dependence on the ground transportation supplies. In this paper, a laser-assisted additive manufacturing process is developed to fabricate lunar regolith composites with PA12/SiO2 mixing powders. The process parameters and composite material compositions are optimized in an appropriate range through orthogonal experiments to establish the relationship of process–structure–property for lunar regolith composites. The optimal combination of composite material compositions and process parameters are mixing ratio of 50/50 in volume, laser power of 30 W, scanning speed of 3500 mm/s, and scanning hatch space of 0.2 mm. The maximum tensile strength of lunar regolith composites reaches 9.248 MPa, and the maximum depth of surface variation is 120.79 μm, which indicates poor powder fusion and sintering quality. Thereafter, the mechanical properties of laser-sintered lunar regolith composites are implemented to the topology optimization design of complex structures. The effectiveness and the feasibility of this laser-assisted process are potentially developed for future lightweight design and manufacturing of the solar panel installed on the lunar rover.

关键词: in situ manufacturing     laser-assisted powder fusion process     mechanical properties     topological structure design    

Temperature field simulation of laser homogenizing equipment

Juanjuan WANG, Yunshan WANG, Fudong ZHU

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 49-52 doi: 10.1007/s11465-009-0005-1

摘要: The laser homogenizing equipment was devised using the ring scanning principle. Its working principle is explained. A laser scanning ring facula is obtained when the laser beam goes through the equipment’s optical system rotating with high-frequency. The scanning ring facula’s mathematic model is established based on the temperature field’s superposing principle. The ring facula’s light intensity distribution and temperature distribution characteristics are achieved by simulating its temperature field. By studying the effect of parameters on the temperature field, the best parameter can be found. Results show that favorable temperature distribution characteristics can be attained by choosing appropriate parameters, and even the thermal effect can be realized by utilizing the circumference power compensating for the heat exchange lost in the horizontal direction. The uniform hardness layer and better process quality can be attained using the ring facula optimized for metal laser heat treatment.

关键词: laser homogenizing technology     laser scanning ring facula     temperature field    

Recent progress in electric-field assisted combustion: a brief review

《能源前沿(英文)》 2022年 第16卷 第6期   页码 883-899 doi: 10.1007/s11708-021-0770-z

摘要: The control of combustion is a hot and classical topic. Among the combustion technologies, electric-field assisted combustion is an advanced techno-logy that enjoys major advantages such as fast response and low power consumption compared with thermal power. However, its fundamental principle and impacts on the flames are complicated due to the coupling between physics, chemistry, and electromagnetics. In the last two decades, tremendous efforts have been made to understand electric-field assisted combustion. New observations have been reported based on different combustion systems and improved diagnostics. The main impacts, including flame stabilization, emission reduction, and flame propagation, have been revealed by both simulative and experimental studies. These findings significantly facilitate the application of electric-field assisted combustion. This brief review is intended to provide a comprehensive overview of the recent progress of this combustion technology and further point out research opportunities worth investigation.

关键词: electric field     combustion     flame stabilization     emission reduction     flame propagation    

激光再制造技术与应用发展研究

姚喆赫,姚建华,向巧

《中国工程科学》 2020年 第22卷 第3期   页码 63-70 doi: 10.15302/J-SSCAE-2020.03.011

摘要:

激光再制造技术作为制造技术创新的前沿领域,深刻改变着高端装备的设计与运行方式,是绿色再制造的重要支撑技术,是促进制造产业可持续发展的重要力量。本文从激光再制造技术的宏观需求入手,梳理了激光再制造技术的发展及应用现状,凝练了激光再制造技术和产业在发展过程中面临的挑战,进而提出了面向2025 年、2035 年以及2050 年的分阶段发展目标。针对当前我国激光再制造技术在专用材料、核心器件、再制造理念与标准体系等方面存在的问题与挑战,研究提出:加强战略层面的积极引导;构建激光增材再制造材料基因组体系;完善标准化体系和高层次应用型人才培养体系;加大应用推广力度,引导行业整合;建立合作平台,加快关键共性技术创新发展,为激光再制造技术及其产业发展提供支撑。

关键词: 激光再制造,多能场,现场再制造,全生命周期    

Study on the measurement of temperature field using laser holographic interferometry

Jinrong ZHU, Suyi HUANG, Wei LV, Huaichun ZHOU

《能源前沿(英文)》 2011年 第5卷 第1期   页码 120-124 doi: 10.1007/s11708-010-0107-9

摘要: The temperature field of an axisymmetric ethylene diffusion flame is measured using laser holographic interferometry. Temperature field inversion is completed with the aid of components distribution divided from numerical simulation of combustion and air components assumption. Error analysis of key steps is conducted using the theoretical formula of interference temperature measurement and characteristic structure of fringes obtained from optical simulation. Based on the calculation and analysis, air components assumption will not cause significant error in the low temperature region but will result in high error in the high temperature region. Moreover, the small error in environmental temperature measurement transfer to a high temperature range will expand more than tenfold. Results of temperature measurement using air components assumption relative to combustion simulation require the greatest amendment amounting to seven percent.

关键词: temperature field     flame     error analysis     holographic interferometry    

Coupling evaluation for material removal and thermal control on precision milling machine tools

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 12-12 doi: 10.1007/s11465-021-0668-9

摘要: Machine tools are one of the most representative machining systems in manufacturing. The energy consumption of machine tools has been a research hotspot and frontier for green low-carbon manufacturing. However, previous research merely regarded the material removal (MR) energy as useful energy consumption and ignored the useful energy consumed by thermal control (TC) for maintaining internal thermal stability and machining accuracy. In pursuit of energy-efficient, high-precision machining, more attention should be paid to the energy consumption of TC and the coupling relationship between MR and TC. Hence, the cutting energy efficiency model considering the coupling relationship is established based on the law of conservation of energy. An index of energy consumption ratio of TC is proposed to characterize its effect on total energy usage. Furthermore, the heat characteristics are analyzed, which can be adopted to represent machining accuracy. Experimental study indicates that TC is the main energy-consuming process of the precision milling machine tool, which overwhelms the energy consumption of MR. The forced cooling mode of TC results in a 7% reduction in cutting energy efficiency. Regression analysis shows that heat dissipation positively contributes 54.1% to machining accuracy, whereas heat generation negatively contributes 45.9%. This paper reveals the coupling effect of MR and TC on energy efficiency and machining accuracy. It can provide a foundation for energy-efficient, high-precision machining of machine tools.

关键词: machine tools     cutting energy efficiency     thermal stability     machining accuracy     coupling evaluation    

Study on the microwave-assisted extraction of polyphenols from tea

Liyun WANG, Peiyong QIN, Yan HU,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 307-313 doi: 10.1007/s11705-009-0282-6

摘要: This study demonstrated a promising method for quickly extracting tea polyphenol (TP) by microwave-assisted extraction (MAE) technology. Some influential parameters, including MAE temperature, microwave power, concentration of extraction solvent, MAE time and the solid/liquid ratio, were investigated. The optimum condition of MAE was obtained by dual extraction with 60% ethanol (v/v) and the solid/liquid ratio 1:12 g/mL at 80°C for 10 minutes under the microwave power 600 W. The yield of TP was 96.5% under the described condition. Compared with traditional methods, including hot reflux extraction (HRE), ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), the extraction time was saved 8 times than that of HRE, and the yield was increased by 17.5%. The extraction time at comparable levels of production was saved 2 times, and the energy consumption was one fourth that of UAE. The extraction time was saved 5 times than that of SFE, and the yield of TP was increased by 40%. Moreover, compared with MAE of TP studied by others, it decreased the solid/liquid ratio from 1 ∶ 20 to 1 ∶ 12 g/mL without 90-min pre-leaching time, and the yield of TP was increased by 6%–40%.

关键词: energy consumption     microwave-assisted extraction     optimum condition     pre-leaching     concentration    

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 5-21 doi: 10.1007/s11708-017-0517-z

摘要: Radiative thermoelectric energy converters, which include thermophotovoltaic cells, thermoradiative cells, electroluminescent refrigerators, and negative electroluminescent refrigerators, are semiconductor p-n devices that either generate electricity or extract heat from a cold body while exchanging thermal radiation with their surroundings. If this exchange occurs at micro or nanoscale distances, power densities can be greatly enhanced and near-field radiation effects may improve performance. This review covers the fundamentals of near-field thermal radiation, photon entropy, and nonequilibrium effects in semiconductor diodes that underpin device operation. The development and state of the art of these near-field converters are discussed in detail, and remaining challenges and opportunities for progress are identified.

关键词: energy conversion systems     luminescent refrigeration     near-field radiation     thermophotovoltaic     thermoradiative cell    

面向2035 信息领域激光技术发展趋势展望

“我国激光技术与信息应用2035 发展战略研究”课题组

《中国工程科学》 2020年 第22卷 第3期   页码 7-13 doi: 10.15302/J-SSCAE-2020.03.002

摘要:

激光技术自发明以来,就开始广泛应用于信息领域。激光技术促进了信息技术突飞猛进的发展,已是当今信息科技发展的主要动力。“我国激光技术与信息应用2035 发展战略研究”是中国工程院设立的重点咨询项目“我国激光技术与应用2035 发展战略研究”的课题之一,旨在对我国激光技术在信息领域的应用及相关产业发展情况开展全面研究,凝练信息领域激光技术的发展趋势,提出能够促进该领域发展的合理建议。本文通过介绍光通信、激光显示、光存储、光传感等几个激光技术在信息领域的主要应用,对其国内外研究和发展现状、主要关键技术、国内外产业发展情况进行了深入分析,研究提出:确立研究方向重点,布局核心技术开发;搭建产业创新平台,提高技术创新水平;注重知识产权保护,加强高端人才培养;引导“政产学研”协同,促进成果转化合作;加大政策扶持力度,引导行业健康发展;发挥产业集聚优势,增强企业竞争能力。

关键词: 激光技术,光通信,激光显示,光存储,光传感    

高能激光与应用光学的几个问题

杜祥琬

《中国工程科学》 2001年 第3卷 第2期   页码 21-24

摘要:

高能激光的产生、传输和应用是现代激光技术和光学工程的一个重要发展方向。它不仅涉及到一系列物理问题,还有赖于多项要求极高的工程技术问题。文章提出了8个与高能激光有关的应用光学问题,包括高能激光器、高质量光学元器件、先进的自适应光学技术、非线性光学相共轭技术、变频技术及光束相干合成技术等。着重阐明对它们的要求和可能的发展方向。

关键词: 高能激光     远距传输     应用光学    

消费领域用能特征探究

江亿,朱安东,郭偲悦

《中国工程科学》 2015年 第17卷 第8期   页码 122-131

摘要:

根据使用过程特征,可以将用能行为分成生产领域用能与消费领域用能。前者提供产品,后者提供服务。消费领域与生产领域用能存在不同特征,其评价方法、节能途径、战略政策等也存在差别。考虑到这一领域能耗可能是我国下一阶段能耗增长点,在节能领域需要对其给予足够的重视。本文在分析消费领域用能特征的基础上,提出对其的衡量方式和节能途径,并针对我国目前消费领域用能的现状给出建议。

关键词: 消费领域;生产领域;能耗;特征    

Rotating magnetic beacons magnetic field strength size in SAGD

Bing TU, Desheng LI, Enhuai LIN, Bin LUO, Jian HE, Lezhi YE, Jiliang LIU, Yuezhong WANG

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 446-449 doi: 10.1007/s11465-010-0113-y

摘要: Rotation magnetic beacons magnetic field strength is very important to drill parallel horizontal twin wells in steam assisted gravity drainage (SAGD). This paper analyzes a small magnet with a diameter of 25.4 mm. At each end, there is a length of 12.6 mm with permanent magnet, and in the middle, there is a length of 78 mm with magnetic materials. The magnetic field strength generated by the magnetic material of 1J12, 1J50, and 1J79 is analyzed, respectively. ANSOFT software is used to simulate the magnetic field strength generated by different magnetic materials above, which also be tested through experimental methods. The comparison of the simulation and experimental results show that experimental and simulation results are basically consistent, and the results can meet the specific requirements of engineering applications.

关键词: rotating magnetic beacons     steam assisted gravity drainage (SAGD)     ANSOFT    

Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1416-4

摘要:

• Solvent-free chitosan oxidation is obtained by rapid mechanochemical reaction.

关键词: Chitosan     High energy ball milling     Mechanochemistry     Oxidation    

A solar assisted heat pump drying system for grain in-store drying

Haifeng LI, Yanjun DAI, Jianguo DAI, Xibo WANG, Lei WEI,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 386-391 doi: 10.1007/s11708-010-0003-3

摘要: For grain in-store drying, a solar assisted drying process has been developed, which consists of a set including a solar-assisted heat pump, a ventilation system, a grain stirrer, etc. In this way, low power consumption, short cycle time and water content uniformity can be achieved in comparison with the conventional method. A solar-assisted heat pump drying system has been designed and manufactured for a practical granary, and the energy consumption performance of the unit is analyzed. The analysis result shows that the solar fraction of the unit is higher than 20%, the coefficient of performance about system (COP) is 5.19, and the specific moisture extraction rate (SMER) can reach 3.05 kg/kWh.

关键词: solar energy     heat pump     airflow     in-store drying    

标题 作者 时间 类型 操作

Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal

期刊论文

Development of lunar regolith composite and structure via laser-assisted sintering

期刊论文

Temperature field simulation of laser homogenizing equipment

Juanjuan WANG, Yunshan WANG, Fudong ZHU

期刊论文

Recent progress in electric-field assisted combustion: a brief review

期刊论文

激光再制造技术与应用发展研究

姚喆赫,姚建华,向巧

期刊论文

Study on the measurement of temperature field using laser holographic interferometry

Jinrong ZHU, Suyi HUANG, Wei LV, Huaichun ZHOU

期刊论文

Coupling evaluation for material removal and thermal control on precision milling machine tools

期刊论文

Study on the microwave-assisted extraction of polyphenols from tea

Liyun WANG, Peiyong QIN, Yan HU,

期刊论文

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

期刊论文

面向2035 信息领域激光技术发展趋势展望

“我国激光技术与信息应用2035 发展战略研究”课题组

期刊论文

高能激光与应用光学的几个问题

杜祥琬

期刊论文

消费领域用能特征探究

江亿,朱安东,郭偲悦

期刊论文

Rotating magnetic beacons magnetic field strength size in SAGD

Bing TU, Desheng LI, Enhuai LIN, Bin LUO, Jian HE, Lezhi YE, Jiliang LIU, Yuezhong WANG

期刊论文

Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan

期刊论文

A solar assisted heat pump drying system for grain in-store drying

Haifeng LI, Yanjun DAI, Jianguo DAI, Xibo WANG, Lei WEI,

期刊论文